REPHASING TYPE CUSTOM WELDED HYDRAULIC CYLINDERS

For Working Pressures to 5000 PSIG (345 Bar)
What are Rephasing Cylinders?

Rephasing cylinders are two or more cylinders plumbed in series or parallel, with the bores and rods sized such that all rods extend and/or retract equally when flow is directed to the first, or last, cylinder within the system.

In “parallel” applications, the bore and rod sizes are always the same, and the cylinders are always used in pairs. The schematic shown as “Figure A” is for a “parallel” re-phasing cylinder application. Such circuits are typically used for the steering function on machines.

In “series” applications, the bore and rod sizes are typically different, and two or more cylinders may be used. In these applications, the bores and rods are sized such that all rods extend or retract equally when flow is applied to the first or last cylinder within the system. The schematic shown as “Figure B” on this page represents a “series” rephasing application.

This hydraulic synchronization of rod positions eliminates the need for a flow divider in the hydraulic system, or any type of mechanical connection between the cylinder rods to achieve synchronization. All Energy® welded cylinders can be modified to take advantage of these rephasing design benefits.

HOW IS REPHASING ACHIEVED?

Rephasing is a means to allow hydraulic fluid to bypass the cylinder piston seal (i.e., to “rephase”) at the fully extended and/or retracted position. This allows the cylinders to resynchronize in the event of a slight difference in the rod positions. It also allows air to be purged from the hydraulic system upon commissioning.

The schematic at right represents the rephasing concept within a hydraulic cylinder.

Energy’s Rephasing is achieved by one of two designs. The first one (Figure D) is a groove that is milled into the inside of the cylinder wall (body) at the fully extended and/or retracted position. These grooves create a hydraulic bypass around the piston, allowing makeup oil and/or air to bypass the piston at the fully extended and/or retracted position.
Energy uses a special milling tool to machine the rephasing groove. In addition, a special deburring operation is added after the grooves are machined. This achieves a very smooth surface for the piston seals to pass over, minimizing the possibility of a cut or damaged seal.

This approach achieves the rephasing function at the lowest cost.

The second technology utilized is a rephasing valve within the cylinder’s piston. The two figures below (Figures E & F) illustrate this approach.

The rephasing valve is a bi-directional mechanically-actuated check valve. At all positions other than fully extended or fully retracted, it does not allow flow through the piston. However, at the fully extended and/or retracted position, the valve makes mechanical contact with the cylinder guide or endcap. This contact actuates the valve, allowing makeup oil and/or air to bypass the piston.

The advantage of this concept is that it is extremely robust. Also, there is no pressure limitation. At high pressures, fluid velocities through rephasing grooves can become excessive, potentially causing seal damage. The rephasing valve eliminates this possibility by routing the fluid through, rather than around, the piston.

WHAT ARE THE BENEFITS OF THE REPHASING DESIGN APPROACH?

- Lower Overall Installed Cost – Eliminates The Need For Additional Flow Dividing Component(s) Within The Hydraulic System
- Synchronization Of Rod Positions Can Be Achieved Without A Mechanical Connection Between The Rods
- Facilitates The Purging Of Air From The Hydraulic System

AVAILABLE FEATURES FOR ENERGY’S REPHASING CYLINDERS INCLUDE:

- Standard bores from 1 inch (2.54 cm) to 10 inch (25.4 cm); other sizes available
- Standard rod diameters from .625 inch (1.59 cm) to 6 inch (15.24 cm); other sizes available
- Standard strokes to 15 feet (4.57 m); longer strokes available
- Working pressures to 5,000 psig (345 bar); special designs available for working pressures up to 10,000 psig (690 bar)
- A wide variety of mounting configurations and end mechanisms
- A variety of integral valves
- SAE ORB, NPTF, and other porting configurations available
- Special housing and rod materials for corrosive or hostile environments
- Stop tubes, cushions, and external fluid lines
- Various packing, seal, and wiper materials for optimum life and performance in the customer’s application
- Various surface finishes and treatments for optimum life and performance in the customer’s application
- Electronic position-sensing systems
CUSTOM QUOTATION REQUEST

All Energy® welded cylinders are custom-made.
Please complete and return the following sheet so that we can provide you with the best cylinder for your application.

ENERGY® Custom Quotation Request Form

This form must be filled out in its entirety before a welded cylinder quotation can be prepared. Unless noted otherwise by the customer, Energy® Manufacturing will use the following parameters with respect to the processing of this request:

1. The oil temperature in the cylinder will be 170° Fahrenheit (77° Celsius) or less.
2. The rod speed will be 50 feet per minute (15.2 meters per minute) or less.
3. System filtration will be 20 micron or better.
4. The fluid used is SAE 20 (ISO VG68) or less-viscous petroleum-based fluid and is non-foaming type for hydraulic use.
5. Mount center-to-center and stroke dimensions are +/- 1/8" (+/-3.2 mm).
6. The cylinder is not used in a corrosive environment.

PURPOSE OF QUOTE: ________________________________ QUOTE DEADLINE DATE: _______________________

CUSTOMER DATA
Customer name: __
Address: __
City, State or Province, Zip or Postal Code: _______________________
Telephone number: __________________________ Fax number: ______________ E-mail: ______________________________
Purchasing contact: _________________________________ Engineering contact: ______________________________

CYLINDER DATA
All welded cylinder quotation requests should be accompanied by a blueprint or sketch and the following data should be completed.

Cushioned cylinder requests must include pump flow to cylinder, weight of load, and details of the linkage between cylinder and load.

Bore size: ____________________________
Stroke length: ____________________________
Rod diameter: ____________________________
Retracted pin center length: ____________________________
Port type: ____________________________
Port size: ____________________________
Mounting pin diameter: ____________________________
Test requirements:
() Standard 100% air test
() 100% hydraulic test
Is cylinder cushioned? () Yes () No

QUOTE DATA
Annual Usage: ____________________________
Target Price: ____________________________

APPLICATION DATA
Type if machine (crane, combine, etc.): ____________________________

Will cylinder be used to lift people? ____________________________
Type of function (hoist, swing, steering, etc.): ____________________________
Estimated cycles per year: ____________________________

Does cylinder always reach full extend or retract position? ____________________________

Is cylinder subjected to high overrunning loads? ____________________________
Is cylinder subjected to side loading? ____________________________
Is cylinder barrel braced to restrict buckling? ____________________________
Is cylinder exposed to corrosive environments? ____________________________

Mountings:
Base: ____________________________
Rod: ____________________________
Finish: ____________________________
Acrylic Water-Based
Primer Paint (please specify color): ____________________________
Other Paint (please specify): ____________________________
Clear Rust-Preventative Coating: ____________________________
None: ____________________________

Does cylinder rephase? () Yes () No
Release Quantity: ____________________________
Customer Part Number: ____________________________

Primary cylinder effort will be to () push load
() pull load () both push and pull load
Cylinder is () double acting () single acting
Cylinder is mounted () vertically () horizontally
() swings through arc with mechanism

Pressure values:
Operating: ____________________________
Peak: ____________________________
Main system relief: ____________________________

Operating flow range: ____________________________